Utilizing simulations to guide furnace designs for the E-Iron™ Nugget process

Aaron Fisher, Christopher Walton (LLNL)
Chenn Zhou, Armin Silaen, Haibo Ma (CIVS, Purdue University Northwest)
John Simmons (Carbontec)

Need

- **Carbontec Energy Corporation** has developed a novel iron smelting process that, as proven in an extended pilot operation, can produce high quality pig iron nuggets on a continuous basis
 - Can convert both iron ore and steel mill wastes into low sulfur iron nuggets
 - Utilizes biomass reductants in place of coke
- Carbontec is moving forward to construct a plant that will produce 100,000 tonnes/yr of pig iron grade nuggets
 - We are modeling the core nugget process to provide a tool to assist in the final design of the production plant by avoiding pitfalls in the joining of the core process with production infrastructure

Approach

Carbontec E-Nugget Process

- Iron ore and biomass are blended and pressed into briquettes
- Briquettes are fed through multiple temperature zones of a linear furnace
- The iron ore and biomass run through a series of chemical reactions and the iron ore is reduced to iron
- The metallic iron then flows from the briquettes and pools into nugget sized pieces
- The resulting material is cooled tumbled and the iron nuggets are magnetically separated

E-Nugget Process Simulations

- Star CCM model of experimental process
 - Models include multiphase solid/gas flow, radiative and convective heat transfer, and 16 reaction chemistry model
 - 2D and 3D simulations on up to 512 CPUs
 - Temperature varied for different furnace zones
- Model validated against experimental data

Results (continued)

- Simulations were run on 4 experimental cases
 - M-11 was run at higher temperatures (1600K) and had a full yield of Fe
 - S-02 was run at higher temperatures (1600K) and utilized different ore and flux conditions and yielded ~50%
 - M-12 and S-04 were run at lower temperatures (1300K) failed to yield Fe did not yield metallic Fe

Benefits

- Process replaces coke in iron smelting
 - First plant will displace 90M lbs coke/yr*
 - Converting coal to coke requires 1.75-2.5 MJ/lb**
 - If 5% of US iron production were produced with this approach, 2 PJ/yr of energy could be saved by reducing coke needs by 1 billion lbs
- E-Iron™ nuggets are good feedstock for electric arc and BOF furnaces
 - 96.5% Fe, 2.9% C, 0.017% S

*2014 AIST average coke rate is ~900lbs/NTHM
**2007 IEA Tracking Industrial efficiency... p110

This work was supported by the U.S. Department of Energy (DOE), Office of Efficiency and Renewable Energy (EERE), Advanced Manufacturing Office (AMO) under contract no. DE-AC52-07NA27344.
LNL-POST-724662