Manufacturing USA
Lightweight Metals Institute

Presentation to:
HPC4Mfg Industry Engagement Day

March 3, 2017

Barron J. Bichon, Ph.D.
Manager at Southwest Research Institute
Validation & Certification Technology Lead at LIFT
Lightweight Innovations For Tomorrow Institute Mission

• Accelerate the development and application of innovative lightweight metal production and component manufacturing technologies to benefit the US transportation, aerospace and defense market sectors

• Deliver high value advanced alloy processing technologies that reduce the weight of machines that move people and goods on land, sea and air
LIFT Technology Scope

• Priority metal classes and their alloys:
 • Advanced High-Strength Steels, Titanium, Aluminum, and Magnesium

• Technology development grouped into six pillars:
 • Melt Processing
 • Powder Processing
 • Thermo-mechanical Processing
 • Low-cost Agile Tooling
 • Coatings
 • Joining and Assembly

• Coupled with cross-cutting themes:
 • Integrated Computational Materials Engineering (ICME)
 • Validation & Certification
 • Design
 • Life-cycle Analysis
 • Cost & Supply Chain Modeling
 • Corrosion
 • Blast & Ballistics
LIFT Technology Scope

• Priority metal classes and their alloys:
 • Advanced High-Strength Steels, Titanium, **Aluminum**, and Magnesium

• Technology development grouped into six pillars:
 • Melt Processing
 • Powder Processing
 • **Thermo-mechanical Processing**
 • Low-cost Agile Tooling
 • Coatings
 • Joining and Assembly

• Coupled with cross-cutting themes:
 • **Integrated Computational Materials Engineering (ICME)**
 • Validation & Certification
 • Design
 • Life-cycle Analysis
 • Cost & Supply Chain Modeling
 • Corrosion
 • Blast & Ballistics
LIFT TMP-R1-3b
Assured Properties in Al-Li Forgings

• Objective: Accurately predict the performance of aluminum-lithium alloys in formed parts by developing advanced computer simulations.

• Industry Partners:
 • United Technologies Research Center
 • Lockheed Martin

• Research Partners:
 • University of Michigan
 • Case Western Reserve University
 • The Ohio State University
 • Southwest Research Institute

Replace make and break with accurate computational simulations
High Performance Computing for Manufacturing Project

• Simulate the interaction and evolution of dislocations with the primary precipitates to predict the strength of proposed Al-Li alloys

• Includes full elastic interactions between dislocations, the evolution of dislocation networks, and the treatment of the precipitates as finite nanoscale objects locally interacting with the dislocations

• Execute large-scale dislocation dynamics simulations on supercomputing facilities at LLNL to investigate the parameter space of the precipitate microstructure to provide sufficient statistical information
Results & Benefits

• Development of new mobility law for Al and Al-Li alloys
• Large-scale simulations of aluminum with periodic arrays of ellipsoidal lithium (and other) precipitates show how to develop higher strength
• New lightweight high melting-point Al-Li alloys will allow us to reduce the weight of aircraft engine turbine blades
• Anticipated weight saving from these new blades is 20% - 25%
• Total weight saving per engine is about 75 lbs
• Total amount of fuel saving 13.5 million gallons per year
• Expected savings are $26M per year